MCMC algorithm based on Markov random field in image segmentation
Huazhe Wang and
Li Ma
PLOS ONE, 2024, vol. 19, issue 2, 1-19
Abstract:
In the realm of digital image applications, image processing technology occupies a pivotal position, with image segmentation serving as a foundational component. As the digital image application domain expands across industries, the conventional segmentation techniques increasingly challenge to cater to modern demands. To address this gap, this paper introduces an MCMC-based image segmentation algorithm based on the Markov Random Field (MRF) model, marking a significant stride in the field. The novelty of this research lies in its method that capitalizes on domain information in pixel space, amplifying the local segmentation precision of image segmentation algorithms. Further innovation is manifested in the development of an adaptive segmentation image denoising algorithm based on MCMC sampling. This algorithm not only elevates image segmentation outcomes, but also proficiently denoises the image. In the experimental results, MRF-MCMC achieves better segmentation performance, with an average segmentation accuracy of 94.26% in Lena images, significantly superior to other common image segmentation algorithms. In addition, the study proposes that the denoising model outperforms other algorithms in peak signal-to-noise ratio and structural similarity in environments with noise standard deviations of 15, 25, and 50. In essence, these experimental findings affirm the efficacy of this study, opening avenues for refining digital image segmentation methodologies.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0296031 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 96031&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0296031
DOI: 10.1371/journal.pone.0296031
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().