Optimal dynamic pricing for public transportation considering consumer social learning
Yihua Zhang and
Zhan Zhao
PLOS ONE, 2024, vol. 19, issue 1, 1-19
Abstract:
Effective public transportation pricing strategies are critical to reducing traffic congestion and meeting consumer demand for sustainable urban development. In this study, we construct a dynamic game pricing model and a social learning network model for consumers of three modes of public transportation including metro, bus, and pa-transit. In the model, the metro, bus, and pa-transit operators maximize their profits through dynamic pricing optimization, and consumers maximize their utility by adjusting their travel habits through social learning in the social network. The reinforcement learning algorithm is applied to simulate the model, and the results show that: (1) as consumers’ perceived sensitivity to different modes of travel increases, the market share and price of each mode of travel adjust accordingly. (2) When taking into account consumers’ social learning behavior, the market share of metros remains high, while the market shares of buses and pa-transit are relatively low. (3) As consumers become more sensitive to their perception of each travel mode, operators invest more resources in improving service quality to gain market share, which in turn affects the price of each travel mode. Our results provide decision support for optimal pricing of urban public transportation.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0296263 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 96263&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0296263
DOI: 10.1371/journal.pone.0296263
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().