Research on 3D point cloud alignment algorithm based on SHOT features
Zheng Fu,
Enzhong Zhang,
Ruiyang Sun,
Jiaran Zang and
Wei Zhang
PLOS ONE, 2024, vol. 19, issue 3, 1-16
Abstract:
To overcome the problem of the high initial position of the point cloud required by the traditional Iterative Closest Point (ICP) algorithm, in this paper, we propose a point cloud registration method based on normal vector and directional histogram features (SHOT). Firstly, a hybrid filtering method based on the voxel idea is proposed and verified using the measured point cloud data, and the noise removal rates of 97.5%, 97.8%, and 93.8% are obtained. Secondly, in terms of feature point extraction, the original algorithm is optimized, and the optimized algorithm can better extract the missing part of the point cloud. Finally, a fine alignment method based on normal vector and directional histogram features (SHOT) is proposed, and the improved algorithm is compared with the existing algorithm. Taking the Stanford University point cloud data and the self-measured point cloud data as examples, the plotted iteration-error plots can be concluded that the improved method can reduce the number of iterations by 40.23% and 37.62%, respectively.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0296704 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 96704&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0296704
DOI: 10.1371/journal.pone.0296704
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().