EconPapers    
Economics at your fingertips  
 

Elevator block brake structural optimization design based on an approximate model

Haijian Wang, Chengwen Yu, Xishan Zhu, Liu Jian, Congcong Lu and Xiaoguang Pan

PLOS ONE, 2024, vol. 19, issue 3, 1-22

Abstract: An Aquila optimizer-back propagation (AO-BP) neural network was used to establish an approximate model of the relationship between the design variables and the optimization objective to improve elevator block brake capabilities and achieve a lightweight brake design. Subsequently, the constraint conditions and objective functions were determined. Moreover, the multi-objective genetic algorithm optimized the structural block brake design. Finally, the effectiveness of the optimization results was verified using simulation experiments. The results demonstrate that the maximum temperature of the optimized brake wheel during emergency braking was 222.09°C, which is 36.71°C lower than that of 258.8°C before optimization, with a change rate of 14.2%. The maximum equivalent stress after optimization was 246.89 MPa, 28.87 MPa lower than that of 275.66 MPa before optimization, with a change rate of 10.5%. In addition, the brake wheel mass was reduced from 58.85 kg to 52.40 kg, and the thermal fatigue life at the maximum equivalent stress increased from 64 times before optimization to 94 times after optimization.

Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0296753 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 96753&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0296753

DOI: 10.1371/journal.pone.0296753

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-31
Handle: RePEc:plo:pone00:0296753