EconPapers    
Economics at your fingertips  
 

AteMeVs: An R package for the estimation of the average treatment effect with measurement error and variable selection for confounders

Li-Pang Chen and Grace Y Yi

PLOS ONE, 2024, vol. 19, issue 9, 1-20

Abstract: In causal inference, the estimation of the average treatment effect is often of interest. For example, in cancer research, an interesting question is to assess the effects of the chemotherapy treatment on cancer, with the information of gene expressions taken into account. Two crucial challenges in this analysis involve addressing measurement error in gene expressions and handling noninformative gene expressions. While analytical methods have been developed to address those challenges, no user-friendly computational software packages seem to be available to implement those methods. To close this gap, we develop an R package, called AteMeVs, to estimate the average treatment effect using the inverse-probability-weighting estimation method to handle data with both measurement error and spurious variables. This developed package accommodates the method proposed by Yi and Chen (2023) as a special case, and further extends its application to a broader scope. The usage of the developed R package is illustrated by applying it to analyze a cancer dataset with information of gene expressions.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0296951 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 96951&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0296951

DOI: 10.1371/journal.pone.0296951

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-10
Handle: RePEc:plo:pone00:0296951