Genetic diversity among maize (Zea mays L.) inbred lines adapted to Japanese climates
Shohei Mitsuhashi
PLOS ONE, 2024, vol. 19, issue 1, 1-11
Abstract:
Understanding the genetic diversity of inbred lines is vital for development of superior F1 varieties. The present study aimed to analyze Japanese maize parental inbred lines and determine their genetic diversity for future breeding. Genetic analyses were conducted using multiple methods. Principal component analysis (PCA), phylogenetic trees, and Bayesian clustering reflected borders between heterotic groups according to the derivation of each inbred line. A self-pollinated line derived from a classic F1 variety and another line from an open-pollinated population from the same derivation were classified as separate components by PCA and Bayesian clustering. The result suggests that open pollination could be essential in modern breeding. Of those classified as dent or flint based on their derivation, some had a combination of all components or clusters. Therefore, the classification of inbred lines should be based on their derivation and DNA markers. The findings will be valuable for breeding and genetic studies in Japan. Additionally, these techniques may be used to obtain a more significant number of SNPs and related phenotypic data.
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0297549 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 97549&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0297549
DOI: 10.1371/journal.pone.0297549
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().