Detection method of organic light-emitting diodes based on small sample deep learning
Hua Qiu,
Jin Huang,
Yi-Cong Feng and
Peng Rong
PLOS ONE, 2024, vol. 19, issue 2, 1-23
Abstract:
In order to solve the surface detection problems of low accuracy, low precision and inability to automate in the production process of late-model display panels, a little sample-based deep learning organic light-emitting diodes detection model SmartMuraDetection is proposed. First, aiming at the detection difficulty of low surface defect contrast, a gradient boundary enhancement algorithm module is designed to automatically identify and enhance defects and background gray difference. Then, the problem of insufficient little sample data sets is solved, Poisson fusion image enhancement module is designed for sample enhancement. Then, a TinyDetection model adapted to small-scale target detection is constructed to improve the detection accuracy of defects in small-scale targets. Finally, SEMUMaxMin quantization module is proposed as a post-processing module for the result images derived from network model reasoning, and accurate defect data is obtained by setting a threshold filter. The number of sample images in the experiment is 334. This study utilizes an organic light-emitting diodes detection model. The detection accuracy of surface defects can be improved by 85% compared with the traditional algorithm. The method in this paper is used for mass production evaluation in the actual display panel production site. The detection accuracy of surface defects reaches 96%, which can meet the mass production level of the detection equipment in this process section.
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0297642 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 97642&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0297642
DOI: 10.1371/journal.pone.0297642
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().