Exploring the temporal dynamics of methane ebullition in a subtropical freshwater reservoir
Lediane Marcon,
Tobias Bleninger,
Michael Männich,
Mayra Ishikawa,
Stephan Hilgert and
Andreas Lorke
PLOS ONE, 2024, vol. 19, issue 3, 1-25
Abstract:
The transport of methane from sediments to the atmosphere by rising gas bubbles (ebullition) can be the dominant, yet highly variable emission pathway from shallow aquatic ecosystems. Ebullition fluxes have been reported to vary in space and time, as methane production, accumulation, and bubble release from the sediment matrix is affected by several physical and bio-geochemical processes acting at different timescales. Time-series analysis and empirical models have been used for investigating the temporal dynamics of ebullition and its controls. In this study, we analyzed the factors governing the temporal dynamics of ebullition and evaluated the application of empirical models to reproduce these dynamics across different timescales and across different aquatic systems. The analysis is based on continuous high frequency measurements of ebullition fluxes and environmental variables in a mesotrophic subtropical and polymictic freshwater reservoir. The synchronization of ebullition events across different monitoring sites, and the extent to which ebullition was correlated to environmental variables varied throughout the three years of observations and were affected by thermal stratification in the reservoir. Empirical models developed for other aquatic systems could reproduce a limited fraction of the variability in observed ebullition fluxes (R2
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0298186 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 98186&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0298186
DOI: 10.1371/journal.pone.0298186
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().