Gut microbiome diversity and function during hibernation and spring emergence in an aquatic frog
Ji-Eun Lee,
Jun-Kyu Park and
Yuno Do
PLOS ONE, 2024, vol. 19, issue 2, 1-15
Abstract:
The gut microbiota maintains a deeply symbiotic relationship with host physiology, intricately engaging with both internal (endogenous) and external (exogenous) factors. Anurans, especially those in temperate regions, face the dual challenges of significant external influences like hibernation and complex internal variances tied to different life histories. In our research, we sought to determine whether different life stages (juvenile versus adult) of the Japanese wrinkled frog (Glandirana rugosa) lead to distinct shifts in gut bacterial communities during winter (hibernation) and its subsequent transition to spring. As hypothesized, we observed a more pronounced variability in the gut bacterial diversity and abundance in juvenile frogs compared to their adult counterparts. This suggests that the gut environment may be more resilient or stable in adult frogs during their hibernation period. However, this pronounced difference was confined to the winter season; by spring, the diversity and abundance of gut bacteria in both juvenile and adult frogs aligned closely. Specifically, the variance in gut bacterial diversity and composition between winter and spring appears to mirror the frogs’ ecological adaptations. During the hibernation period, a dominance of Proteobacteria suggests an emphasis on supporting intracellular transport and maintaining homeostasis, as opposed to active metabolism in the frogs. Conversely, come spring, an uptick in bacterial diversity coupled with a dominance of Firmicutes and Bacteroidetes points to an upsurge in metabolic activity post-hibernation, favoring enhanced nutrient assimilation and energy metabolism. Our findings highlight that the relationship between the gut microbiome and its host is dynamic and bidirectional. However, the extent to which changes in gut bacterial diversity and composition contribute to enhancing hibernation physiology in frogs remains an open question, warranting further investigation.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0298245 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 98245&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0298245
DOI: 10.1371/journal.pone.0298245
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().