EconPapers    
Economics at your fingertips  
 

Optimizing postprandial glucose prediction through integration of diet and exercise: Leveraging transfer learning with imbalanced patient data

Shinji Hotta, Mikko Kytö, Saila Koivusalo, Seppo Heinonen and Pekka Marttinen

PLOS ONE, 2024, vol. 19, issue 8, 1-20

Abstract: Background: In recent years, numerous methods have been introduced to predict glucose levels using machine-learning techniques on patients’ daily behavioral and continuous glucose data. Nevertheless, a definitive consensus remains elusive regarding modeling the combined effects of diet and exercise for optimal glucose prediction. A notable challenge is the propensity for observational patient datasets from uncontrolled environments to overfit due to skewed feature distributions of target behaviors; for instance, diabetic patients seldom engage in high-intensity exercise post-meal. Methods: In this study, we introduce a unique application of Bayesian transfer learning for postprandial glucose prediction using randomized controlled trial (RCT) data. The data comprises a time series of three key variables: continuous glucose levels, exercise expenditure, and carbohydrate intake. For building the optimal model to predict postprandial glucose levels we initially gathered balanced training data from RCTs on healthy participants by randomizing behavioral conditions. Subsequently, we pretrained the model’s parameter distribution using RCT data from the healthy cohort. This pretrained distribution was then adjusted, transferred, and utilized to determine the model parameters for each patient. Results: The efficacy of the proposed method was appraised using data from 68 gestational diabetes mellitus (GDM) patients in uncontrolled settings. The evaluation underscored the enhanced performance attained through our method. Furthermore, when modeling the joint impact of diet and exercise, the synergetic model proved more precise than its additive counterpart. Conclusion: An innovative application of the transfer-learning utilizing randomized controlled trial data can improve the challenging modeling task of postprandial glucose prediction for GDM patients, integrating both dietary and exercise behaviors. For more accurate prediction, future research should focus on incorporating the long-term effects of exercise and other glycemic-related factors such as stress, sleep.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0298506 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 98506&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0298506

DOI: 10.1371/journal.pone.0298506

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-01
Handle: RePEc:plo:pone00:0298506