White-nose syndrome, winter duration, and pre-hibernation climate impact abundance of reproductive female bats
Sarah K Krueger,
Sarah C Williams,
Joy M O’Keefe,
Gene A Zirkle and
Catherine G Haase
PLOS ONE, 2024, vol. 19, issue 4, 1-15
Abstract:
White-nose syndrome (WNS) is an infectious disease that disrupts hibernation in bats, leading to premature exhaustion of fat stores. Though we know WNS does impact reproduction in hibernating female bats, we are unsure how these impacts are exacerbated by local climate factors. We compiled data from four southeastern U.S. states and used generalized linear mixed effects models to compare effects of WNS, pre-hibernation climate variables, and winter duration on the number of reproductive females in species across the range of WNS susceptibility. We predicted we would see a decline in the number of reproductive females in WNS-susceptible species, with the effect exaggerated by longer winter durations and pre-hibernation climate variables that lead to reductions in foraging. We found that the number of reproductive females in WNS-susceptible species was positively correlated with pre-hibernation local climate conditions conducive to foraging; however, WNS-susceptible species experienced an overall decline with the presence of WNS and as winter duration increased. Our long-term dataset provides evidence that pre-hibernation climate, specifically favorable summer weather conditions for foraging, greatly influences the reproduction, regardless of WNS status.
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0298515 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 98515&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0298515
DOI: 10.1371/journal.pone.0298515
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().