Essential elements of physical fitness analysis in male adolescent athletes using machine learning
Yun-Hwan Lee,
Jisuk Chang,
Ji-Eun Lee,
Yeon-Sung Jung,
Dongheon Lee and
Ho-Seong Lee
PLOS ONE, 2024, vol. 19, issue 4, 1-14
Abstract:
Physical fitness (PF) includes various factors that significantly impacts athletic performance. Analyzing PF is critical in developing customized training methods for athletes based on the sports in which they compete. Previous approaches to analyzing PF have relied on statistical or machine learning algorithms that focus on predicting athlete injury or performance. In this study, six machine learning algorithms were used to analyze the PF of 1,489 male adolescent athletes across five sports, including track & field, football, baseball, swimming, and badminton. Furthermore, the machine learning models were utilized to analyze the essential elements of PF using feature importance of XGBoost, and SHAP values. As a result, XGBoost represents the highest performance, with an average accuracy of 90.14, an area under the curve of 0.86, and F1-score of 0.87, demonstrating the similarity between the sports. Feature importance of XGBoost, and SHAP value provided a quantitative assessment of the relative importance of PF in sports by comparing two sports within each of the five sports. This analysis is expected to be useful in analyzing the essential PF elements of athletes in various sports and recommending personalized exercise methods accordingly.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0298870 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 98870&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0298870
DOI: 10.1371/journal.pone.0298870
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().