EconPapers    
Economics at your fingertips  
 

Development of a deep learning-based surveillance system for forest fire detection and monitoring using UAV

Ibrahim Shamta and Batıkan Erdem Demir

PLOS ONE, 2024, vol. 19, issue 3, 1-20

Abstract: This study presents a surveillance system developed for early detection of forest fires. Deep learning is utilized for aerial detection of fires using images obtained from a camera mounted on a designed four-rotor Unmanned Aerial Vehicle (UAV). The object detection performance of YOLOv8 and YOLOv5 was examined for identifying forest fires, and a CNN-RCNN network was constructed to classify images as containing fire or not. Additionally, this classification approach was compared with the YOLOv8 classification. Onboard NVIDIA Jetson Nano, an embedded artificial intelligence computer, is used as hardware for real-time forest fire detection. Also, a ground station interface was developed to receive and display fire-related data. Thus, access to fire images and coordinate information was provided for targeted intervention in case of a fire. The UAV autonomously monitored the designated area and captured images continuously. Embedded deep learning algorithms on the Nano board enable the UAV to detect forest fires within its operational area. The detection methods produced the following results: 96% accuracy for YOLOv8 classification, 89% accuracy for YOLOv8n object detection, 96% accuracy for CNN-RCNN classification, and 89% accuracy for YOLOv5n object detection.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0299058 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 99058&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0299058

DOI: 10.1371/journal.pone.0299058

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-05
Handle: RePEc:plo:pone00:0299058