Robust control chart for nonlinear conditionally heteroscedastic time series based on Huber support vector regression
Chang Kyeom Kim,
Min Hyeok Yoon and
Sangyeol Lee
PLOS ONE, 2024, vol. 19, issue 2, 1-31
Abstract:
This study proposes a control chart that monitors conditionally heteroscedastic time series by integrating the Huber support vector regression (HSVR) and the one-class classification (OCC) method. For this task, we consider the model that incorporates nonlinearity to the generalized autoregressive conditionally heteroscedastic (GARCH) time series, named HSVR-GARCH, to robustly estimate the conditional volatility when the structure of time series is not specified with parameters. Using the squared residuals, we construct the OCC-based control chart that does not require any posterior modifications of residuals unlike previous studies. Monte Carlo simulations reveal that deploying squared residuals from the HSVR-GARCH model to control charts can be immensely beneficial when the underlying model becomes more complicated and contaminated with noises. Moreover, a real data analysis with the Nasdaq composite index and Korea Composite Stock Price Index (KOSPI) datasets further disclose the validity of using the bootstrap method in constructing control charts.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0299120 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 99120&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0299120
DOI: 10.1371/journal.pone.0299120
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().