Deep Aramaic: Towards a synthetic data paradigm enabling machine learning in epigraphy
Andrei C Aioanei,
Regine R Hunziker-Rodewald,
Konstantin M Klein and
Dominik L Michels
PLOS ONE, 2024, vol. 19, issue 4, 1-29
Abstract:
Epigraphy is witnessing a growing integration of artificial intelligence, notably through its subfield of machine learning (ML), especially in tasks like extracting insights from ancient inscriptions. However, scarce labeled data for training ML algorithms severely limits current techniques, especially for ancient scripts like Old Aramaic. Our research pioneers an innovative methodology for generating synthetic training data tailored to Old Aramaic letters. Our pipeline synthesizes photo-realistic Aramaic letter datasets, incorporating textural features, lighting, damage, and augmentations to mimic real-world inscription diversity. Despite minimal real examples, we engineer a dataset of 250 000 training and 25 000 validation images covering the 22 letter classes in the Aramaic alphabet. This comprehensive corpus provides a robust volume of data for training a residual neural network (ResNet) to classify highly degraded Aramaic letters. The ResNet model demonstrates 95% accuracy in classifying real images from the 8th century BCE Hadad statue inscription. Additional experiments validate performance on varying materials and styles, proving effective generalization. Our results validate the model’s capabilities in handling diverse real-world scenarios, proving the viability of our synthetic data approach and avoiding the dependence on scarce training data that has constrained epigraphic analysis. Our innovative framework elevates interpretation accuracy on damaged inscriptions, thus enhancing knowledge extraction from these historical resources.
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0299297 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 99297&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0299297
DOI: 10.1371/journal.pone.0299297
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().