The effect of cooperator recognition on competition among clones in spatially structured microbial communities
Adrienna Bingham,
Aparajita Sur,
Leah B Shaw and
Helen A Murphy
PLOS ONE, 2024, vol. 19, issue 3, 1-19
Abstract:
In spatially structured microbial communities, clonal growth of stationary cells passively generates clusters of related individuals. This can lead to stable cooperation without the need for recognition mechanisms. However, recent research suggests that some biofilm-forming microbes may have mechanisms of kin recognition. To explore this unexpected observation, we studied the effects of different types of cooperation in a microbial colony using spatially explicit, agent-based simulations of two interacting strains. We found scenarios that favor a form of kin recognition in spatially structured microbial communities. In the presence of a “cheater” strain, a strain with greenbeard cooperation was able to increase in frequency more than a strain with obligate cooperation. This effect was most noticeable in high density colonies and when the cooperators were not as abundant as the cheaters. We also studied whether a polychromatic greenbeard, in which cells only cooperate with their own type, could provide a numerical benefit beyond a simple, binary greenbeard. We found the greatest benefit to a polychromatic greenbeard when cooperation is highly effective. These results suggest that in some ecological scenarios, recognition mechanisms may be beneficial even in spatially structured communities.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0299546 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 99546&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0299546
DOI: 10.1371/journal.pone.0299546
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().