Significant duration prediction of seismic ground motions using machine learning algorithms
Xinle Li and
Pei Gao
PLOS ONE, 2024, vol. 19, issue 2, 1-18
Abstract:
This study aims to predict the significant duration (D5-75, D5-95) of seismic motion by employing machine learning algorithms. Based on three parameters (moment magnitude, fault distance, and average shear wave velocity), two additional parameters(fault top depth and epicenter mechanism parameters) were introduced in this study. The XGBoost algorithm is utilized for characteristic parameter optimization analysis to obtain the optimal combination of four parameters. We compare the prediction results of four machine learning algorithms (random forest, XGBoost, BP neural network, and SVM) and develop a new method of significant duration prediction by constructing two fusion models (stacking and weighted averaging). The fusion model demonstrates an improvement in prediction accuracy and generalization ability of the significant duration when compared to single algorithm models based on evaluation indicators and residual values. The accuracy and rationality of the fusion model are validated through comparison with existing research.
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0299639 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 99639&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0299639
DOI: 10.1371/journal.pone.0299639
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().