Machine learning in epidemiology: Neural networks forecasting of monkeypox cases
Lulah Alnaji
PLOS ONE, 2024, vol. 19, issue 5, 1-35
Abstract:
This study integrates advanced machine learning techniques, namely Artificial Neural Networks, Long Short-Term Memory, and Gated Recurrent Unit models, to forecast monkeypox outbreaks in Canada, Spain, the USA, and Portugal. The research focuses on the effectiveness of these models in predicting the spread and severity of cases using data from June 3 to December 31, 2022, and evaluates them against test data from January 1 to February 7, 2023. The study highlights the potential of neural networks in epidemiology, especially concerning recent monkeypox outbreaks. It provides a comparative analysis of the models, emphasizing their capabilities in public health strategies. The research identifies optimal model configurations and underscores the efficiency of the Levenberg-Marquardt algorithm in training. The findings suggest that ANN models, particularly those with optimized Root Mean Squared Error, Mean Absolute Percentage Error, and the Coefficient of Determination values, are effective in infectious disease forecasting and can significantly enhance public health responses.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0300216 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 00216&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0300216
DOI: 10.1371/journal.pone.0300216
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().