EconPapers    
Economics at your fingertips  
 

Load forecasting method based on CEEMDAN and TCN-LSTM

Luo Heng, Cheng Hao and Liu Chen Nan

PLOS ONE, 2024, vol. 19, issue 7, 1-18

Abstract: Aiming at the problems of high stochasticity and volatility of power loads as well as the difficulty of accurate load forecasting, this paper proposes a power load forecasting method based on CEEMDAN (Completely Integrated Empirical Modal Decomposition) and TCN-LSTM (Temporal Convolutional Networks and Long-Short-Term Memory Networks). The method combines the decomposition of raw load data by CEEMDAN and the spatio-temporal modeling capability of TCN-LSTM model, aiming to improve the accuracy and stability of forecasting. First, the raw load data are decomposed into multiple linearly stable subsequences by CEEMDAN, and then the sample entropy is introduced to reorganize each subsequence. Then the reorganized sequences are used as inputs to the TCN-LSTM model to extract sequence features and perform training and prediction. The modeling prediction is carried out by selecting the electricity compliance data of New South Wales, Australia, and compared with the traditional prediction methods. The experimental results show that the algorithm proposed in this paper has higher accuracy and better prediction effect on load forecasting, which can provide a partial reference for electricity load forecasting methods.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0300496 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 00496&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0300496

DOI: 10.1371/journal.pone.0300496

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-05
Handle: RePEc:plo:pone00:0300496