Optimizing strength of directly recycled aluminum chip-based parts through a hybrid RSM-GA-ANN approach in sustainable hot forging
Yahya M Altharan,
Shazarel Shamsudin,
Mohd Amri Lajis,
Sami Al-Alimi,
Nur Kamilah Yusuf,
Nayef Abdulwahab Mohammed Alduais,
Atef M Ghaleb and
Wenbin Zhou
PLOS ONE, 2024, vol. 19, issue 3, 1-29
Abstract:
Direct recycling of aluminum waste is crucial in sustainable manufacturing to mitigate environmental impact and conserve resources. This work was carried out to study the application of hot press forging (HPF) in recycling AA6061 aluminum chip waste, aiming to optimize operating factors using Response Surface Methodology (RSM), Artificial Neural Network (ANN) and Genetic algorithm (GA) strategy to maximize the strength of recycled parts. The experimental runs were designed using Full factorial and RSM via Minitab 21 software. RSM-ANN models were employed to examine the effect of factors and their interactions on response and to predict output, while GA-RSM and GA-ANN were used for optimization. The chips of different morphology were cold compressed into billet form and then hot forged. The effect of varying forging temperature (Tp, 450–550°C), holding time (HT, 60–120 minutes), and chip surface area to volume ratio (AS:V, 15.4–52.6 mm2/mm3) on ultimate tensile strength (UTS) was examined. Maximum UTS (237.4 MPa) was achieved at 550°C, 120 minutes and 15.4 mm2/mm3 of chip’s AS: V. The Tp had the largest contributing effect ratio on the UTS, followed by HT and AS:V according to ANOVA analysis. The proposed optimization process suggested 550°C, 60 minutes, and 15.4 mm2 as the optimal condition yielding the maximum UTS. The developed models’ evaluation results showed that ANN (with MSE = 1.48%) outperformed RSM model. Overall, the study promotes sustainable production by demonstrating the potential of integrating RSM and ML to optimize complex manufacturing processes and improve product quality.
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0300504 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 00504&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0300504
DOI: 10.1371/journal.pone.0300504
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().