EconPapers    
Economics at your fingertips  
 

Automatic detection of expressed emotion from Five-Minute Speech Samples: Challenges and opportunities

Bahman Mirheidari, André Bittar, Nicholas Cummins, Johnny Downs, Helen L Fisher and Heidi Christensen

PLOS ONE, 2024, vol. 19, issue 3, 1-16

Abstract: Research into clinical applications of speech-based emotion recognition (SER) technologies has been steadily increasing over the past few years. One such potential application is the automatic recognition of expressed emotion (EE) components within family environments. The identification of EE is highly important as they have been linked with a range of adverse life events. Manual coding of these events requires time-consuming specialist training, amplifying the need for automated approaches. Herein we describe an automated machine learning approach for determining the degree of warmth, a key component of EE, from acoustic and text natural language features. Our dataset of 52 recorded interviews is taken from recordings, collected over 20 years ago, from a nationally representative birth cohort of British twin children, and was manually coded for EE by two researchers (inter-rater reliability 0.84–0.90). We demonstrate that the degree of warmth can be predicted with an F1-score of 64.7% despite working with audio recordings of highly variable quality. Our highly promising results suggest that machine learning may be able to assist in the coding of EE in the near future.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0300518 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 00518&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0300518

DOI: 10.1371/journal.pone.0300518

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-05
Handle: RePEc:plo:pone00:0300518