Improving traffic accident severity prediction using MobileNet transfer learning model and SHAP XAI technique
Omar Ibrahim Aboulola
PLOS ONE, 2024, vol. 19, issue 4, 1-18
Abstract:
Traffic accidents remain a leading cause of fatalities, injuries, and significant disruptions on highways. Comprehending the contributing factors to these occurrences is paramount in enhancing safety on road networks. Recent studies have demonstrated the utility of predictive modeling in gaining insights into the factors that precipitate accidents. However, there has been a dearth of focus on explaining the inner workings of complex machine learning and deep learning models and the manner in which various features influence accident prediction models. As a result, there is a risk that these models may be seen as black boxes, and their findings may not be fully trusted by stakeholders. The main objective of this study is to create predictive models using various transfer learning techniques and to provide insights into the most impactful factors using Shapley values. To predict the severity of injuries in accidents, Multilayer Perceptron (MLP), Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), Residual Networks (ResNet), EfficientNetB4, InceptionV3, Extreme Inception (Xception), and MobileNet are employed. Among the models, the MobileNet showed the highest results with 98.17% accuracy. Additionally, by understanding how different features affect accident prediction models, researchers can gain a deeper understanding of the factors that contribute to accidents and develop more effective interventions to prevent them.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0300640 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 00640&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0300640
DOI: 10.1371/journal.pone.0300640
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().