Towards explainable interaction prediction: Embedding biological hierarchies into hyperbolic interaction space
Domonkos Pogány and
Péter Antal
PLOS ONE, 2024, vol. 19, issue 3, 1-23
Abstract:
Given the prolonged timelines and high costs associated with traditional approaches, accelerating drug development is crucial. Computational methods, particularly drug-target interaction prediction, have emerged as efficient tools, yet the explainability of machine learning models remains a challenge. Our work aims to provide more interpretable interaction prediction models using similarity-based prediction in a latent space aligned to biological hierarchies. We investigated integrating drug and protein hierarchies into a joint-embedding drug-target latent space via embedding regularization by conducting a comparative analysis between models employing traditional flat Euclidean vector spaces and those utilizing hyperbolic embeddings. Besides, we provided a latent space analysis as an example to show how we can gain visual insights into the trained model with the help of dimensionality reduction. Our results demonstrate that hierarchy regularization improves interpretability without compromising predictive performance. Furthermore, integrating hyperbolic embeddings, coupled with regularization, enhances the quality of the embedded hierarchy trees. Our approach enables a more informed and insightful application of interaction prediction models in drug discovery by constructing an interpretable hyperbolic latent space, simultaneously incorporating drug and target hierarchies and pairing them with available interaction information. Moreover, compatible with pairwise methods, the approach allows for additional transparency through existing explainable AI solutions.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0300906 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 00906&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0300906
DOI: 10.1371/journal.pone.0300906
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().