A novel and effective method for solving the router nodes placement in wireless mesh networks using reinforcement learning
Le Huu Binh and
Thuy- Van T Duong
PLOS ONE, 2024, vol. 19, issue 4, 1-18
Abstract:
Router nodes placement (RNP) is an important issue in the design and implementation of wireless mesh networks (WMN). This is known as an P-hard problem, which cannot be solved using conventional algorithms. Consequently, approximate optimization strategies are commonly used to solve this problem. With heavy node density and wide-area WMNs, solving the RNP problem using approximation algorithms often faces many difficulties, therefore, a more effective solution is necessary. This motivated us to conduct this work. We propose a new method for solving the RNP problem using reinforcement learning (RL). The RNP problem is modeled as an RL model with environment, agent, action, and reward are equivalent to the network system, routers, coordinate adjustment, and connectivity of the RNP problem, respectively. To the best of our knowledge, this is the first study that applies RL to solve the RNP problem. The experimental results showed that the proposed method increased the network connectivity by up to 22.73% compared to the most recent methods.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0301073 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 01073&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0301073
DOI: 10.1371/journal.pone.0301073
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().