EconPapers    
Economics at your fingertips  
 

A refined approach for evaluating small datasets via binary classification using machine learning

Steffen Steinert, Verena Ruf, David Dzsotjan, Nicolas Großmann, Albrecht Schmidt, Jochen Kuhn and Stefan Küchemann

PLOS ONE, 2024, vol. 19, issue 5, 1-21

Abstract: Classical statistical analysis of data can be complemented or replaced with data analysis based on machine learning. However, in certain disciplines, such as education research, studies are frequently limited to small datasets, which raises several questions regarding biases and coincidentally positive results. In this study, we present a refined approach for evaluating the performance of a binary classification based on machine learning for small datasets. The approach includes a non-parametric permutation test as a method to quantify the probability of the results generalising to new data. Furthermore, we found that a repeated nested cross-validation is almost free of biases and yields reliable results that are only slightly dependent on chance. Considering the advantages of several evaluation metrics, we suggest a combination of more than one metric to train and evaluate machine learning classifiers. In the specific case that both classes are equally important, the Matthews correlation coefficient exhibits the lowest bias and chance for coincidentally good results. The results indicate that it is essential to avoid several biases when analysing small datasets using machine learning.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0301276 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 01276&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0301276

DOI: 10.1371/journal.pone.0301276

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-05
Handle: RePEc:plo:pone00:0301276