EconPapers    
Economics at your fingertips  
 

An EPR model for predicting the bearing capacity of single and double-strip foundations near earth slope crests

Khalil Sadiq Ismael and Rafi’ Mahmoud Sulaiman

PLOS ONE, 2024, vol. 19, issue 5, 1-30

Abstract: It is imperative to understand how foundations behave on earthen slopes to accurately predict their allowable carrying capacity in geotechnical engineering. A comprehensive finite element (FE) simulation with PLAXIS 2D was conducted to assess the effects of various parameters on the bearing capacity (BC) of single- and double-strip foundations placed near the earth’s slope crest. The specified parameters include foundation width (B) and depth (Df/B); setback distance between the slope edge and foundation (b/B); soil internal friction (ϕ) and cohesion (c); slope inclination (β); and spacing between foundations (S/B). In addition, the numerically simulated database was used to develop simple mathematical expressions for predicting the capacities in both cases using evolutionary polynomial regression (EPR). The results revealed that the bearing capacity of single- and double-strip foundations increased with an increase in all studied parameters except slope inclination. For single-strip foundations, the outcomes demonstrated that slope inclination has no impact on BC when it is located 6B from the slope edge. However, under interference conditions, the critical center-to-center spacing between foundations is 3–4B, beyond which they behave as individual foundations. Additionally, EPR provides a robust method of predicting the BC of single- and double-strip foundations within slope crests based on the strong correlation of various statistical criteria between simulated and predicted results from training, validation, and testing. Finally, according to sensitivity analysis, in both single and double-strip foundations resting on an earthen slope crest, b/B, B, and ϕ are the most important input parameters that impact the output results.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0301329 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 01329&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0301329

DOI: 10.1371/journal.pone.0301329

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-05
Handle: RePEc:plo:pone00:0301329