DB-EAC and LSTR: DBnet based seal text detection and Lightweight Seal Text Recognition
Baohua Huang,
Aokun Bai,
Yuqiong Wu,
Chanjuan Yang and
Han Sun
PLOS ONE, 2024, vol. 19, issue 5, 1-18
Abstract:
Recognition of the key text of the Chinese seal can speed up the approval of documents, and improve the office efficiency of enterprises or government administrative departments. Due to image blurring and occlusion, the accuracy of Chinese seal recognition is low. In addition, the real dataset is very limited. In order to solve these problems, we improve the differentiable binarization detection algorithm (DBnet) to construct a model DB-ECA for text region detection, and propose a model named LSTR (Lightweight Seal Text Recognition) for text recognition. The efficient channel attention module is added to the differentiable binarization network to solve the feature pyramid conflict, and the convolutional layer network structure is improved to delay downsampling for reducing semantic feature loss. LSTR uses a lightweight CNN more suitable for small-sample generalization, and dynamically fuses positional and visual information through a self-attention-based inference layer to predict the label distribution of feature sequences in parallel. The inference layer not only solves the weak discriminative power of CNN in the shallow layer, but also facilitates CTC (Connectionist Temporal Classification) to accurately align the feature region with the target character. Experiments on the homemade dataset in this paper, DB-ECA compared with the other five commonly used detection models, the precision, recall, F-measure are the best effect of 90.29, 85.17, 87.65, respectively. LSTR compared with the other five kinds of recognition models in the last three years, to achieve the highest effect of accuracy 91.29%, and has the advantages of a small number of parameters and fast inference. The experimental results fully prove the innovation and effectiveness of our model.
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0301862 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 01862&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0301862
DOI: 10.1371/journal.pone.0301862
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().