MMM and MMMSynth: Clustering of heterogeneous tabular data, and synthetic data generation
Chandrani Kumari and
Rahul Siddharthan
PLOS ONE, 2024, vol. 19, issue 4, 1-17
Abstract:
We provide new algorithms for two tasks relating to heterogeneous tabular datasets: clustering, and synthetic data generation. Tabular datasets typically consist of heterogeneous data types (numerical, ordinal, categorical) in columns, but may also have hidden cluster structure in their rows: for example, they may be drawn from heterogeneous (geographical, socioeconomic, methodological) sources, such that the outcome variable they describe (such as the presence of a disease) may depend not only on the other variables but on the cluster context. Moreover, sharing of biomedical data is often hindered by patient confidentiality laws, and there is current interest in algorithms to generate synthetic tabular data from real data, for example via deep learning. We demonstrate a novel EM-based clustering algorithm, MMM (“Madras Mixture Model”), that outperforms standard algorithms in determining clusters in synthetic heterogeneous data, and recovers structure in real data. Based on this, we demonstrate a synthetic tabular data generation algorithm, MMMsynth, that pre-clusters the input data, and generates cluster-wise synthetic data assuming cluster-specific data distributions for the input columns. We benchmark this algorithm by testing the performance of standard ML algorithms when they are trained on synthetic data and tested on real published datasets. Our synthetic data generation algorithm outperforms other literature tabular-data generators, and approaches the performance of training purely with real data.
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0302271 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 02271&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0302271
DOI: 10.1371/journal.pone.0302271
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().