EconPapers    
Economics at your fingertips  
 

Segmenting and classifying lung diseases with M-Segnet and Hybrid Squeezenet-CNN architecture on CT images

Syed Mohammed Shafi and Sathiya Kumar Chinnappan

PLOS ONE, 2024, vol. 19, issue 5, 1-31

Abstract: Diagnosing lung diseases accurately and promptly is essential for effectively managing this significant public health challenge on a global scale. This paper introduces a new framework called Modified Segnet-based Lung Disease Segmentation and Severity Classification (MSLDSSC). The MSLDSSC model comprises four phases: "preprocessing, segmentation, feature extraction, and classification." Initially, the input image undergoes preprocessing using an improved Wiener filter technique. This technique estimates the power spectral density of the noisy and original images and computes the SNR assisted by PSNR to evaluate image quality. Next, the preprocessed image undergoes Segmentation to identify and separate the RoI from the background objects in the lung image. We employ a Modified Segnet mechanism that utilizes a proposed hard tanh-Softplus activation function for effective Segmentation. Following Segmentation, features such as MLDN, entropy with MRELBP, shape features, and deep features are extracted. Following the feature extraction phase, the retrieved feature set is input into a hybrid severity classification model. This hybrid model comprises two classifiers: SDPA-Squeezenet and DCNN. These classifiers train on the retrieved feature set and effectively classify the severity level of lung diseases.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0302507 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 02507&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0302507

DOI: 10.1371/journal.pone.0302507

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-04-30
Handle: RePEc:plo:pone00:0302507