EconPapers    
Economics at your fingertips  
 

Lightweight helmet target detection algorithm combined with Effici-Bi-Level Routing Attention

Yanguo Huang, Minjie Fang and Jian Peng

PLOS ONE, 2024, vol. 19, issue 5, 1-15

Abstract: Wearing helmets is essential in two-wheeler traffic to reduce the incidence of injuries caused by accidents. We present FB-YOLOv7, an improved detection network based on the YOLOv7-tiny model. The objective of this network is to tackle the problems of both missed detection and false detection that result from the difficulties in identifying small targets and the constraints in equipment performance during helmet detection. By applying an enhanced Bi-Level Routing Attention, the network can improve its capacity to extract global characteristics and reduce information distortion. Furthermore, we deploy the AFPN framework and effectively resolve information conflict using asymptotic adaptive feature fusion technology. Incorporating the EfficiCIoU loss significantly improves the prediction box’s accuracy. Experimental trials done on specific datasets reveal that FB-YOLOv7 attains an accuracy of 87.2% and 94.6% on the mean average precision (mAP@.5). Additionally, it maintains a high level of efficiency with frame rates of 129 and 126 frames per second (FPS). FB-YOLOv7 surpasses the other six widely-used detection networks in terms of detection accuracy, network implementation requirements, sensitivity in detecting small targets, and potential for practical applications.

Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0303866 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 03866&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0303866

DOI: 10.1371/journal.pone.0303866

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-31
Handle: RePEc:plo:pone00:0303866