Machine learning model based on radiomics features for AO/OTA classification of pelvic fractures on pelvic radiographs
Jun Young Park,
Seung Hwan Lee,
Young Jae Kim,
Kwang Gi Kim and
Gil Jae Lee
PLOS ONE, 2024, vol. 19, issue 5, 1-15
Abstract:
Depending on the degree of fracture, pelvic fracture can be accompanied by vascular damage, and in severe cases, it may progress to hemorrhagic shock. Pelvic radiography can quickly diagnose pelvic fractures, and the Association for Osteosynthesis Foundation and Orthopedic Trauma Association (AO/OTA) classification system is useful for evaluating pelvic fracture instability. This study aimed to develop a radiomics-based machine-learning algorithm to quickly diagnose fractures on pelvic X-ray and classify their instability. data used were pelvic anteroposterior radiographs of 990 adults over 18 years of age diagnosed with pelvic fractures, and 200 normal subjects. A total of 93 features were extracted based on radiomics:18 first-order, 24 GLCM, 16 GLRLM, 16 GLSZM, 5 NGTDM, and 14 GLDM features. To improve the performance of machine learning, the feature selection methods RFE, SFS, LASSO, and Ridge were used, and the machine learning models used LR, SVM, RF, XGB, MLP, KNN, and LGBM. Performance measurement was evaluated by area under the curve (AUC) by analyzing the receiver operating characteristic curve. The machine learning model was trained based on the selected features using four feature-selection methods. When the RFE feature selection method was used, the average AUC was higher than that of the other methods. Among them, the combination with the machine learning model SVM showed the best performance, with an average AUC of 0.75±0.06. By obtaining a feature-importance graph for the combination of RFE and SVM, it is possible to identify features with high importance. The AO/OTA classification of normal pelvic rings and pelvic fractures on pelvic AP radiographs using a radiomics-based machine learning model showed the highest AUC when using the SVM classification combination. Further research on the radiomic features of each part of the pelvic bone constituting the pelvic ring is needed.
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0304350 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 04350&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0304350
DOI: 10.1371/journal.pone.0304350
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().