EconPapers    
Economics at your fingertips  
 

PathEX: Make good choice for whole slide image extraction

Xinda Yang, Ranze Zhang, Yuan Yang, Yu Zhang and Kai Chen

PLOS ONE, 2024, vol. 19, issue 8, 1-17

Abstract: Background: The tile-based approach has been widely used for slide-level predictions in whole slide image (WSI) analysis. However, the irregular shapes and variable dimensions of tumor regions pose challenges for the process. To address this issue, we proposed PathEX, a framework that integrates intersection over tile (IoT) and background over tile (BoT) algorithms to extract tile images around boundaries of annotated regions while excluding the blank tile images within these regions. Methods: We developed PathEX, which incorporated IoT and BoT into tile extraction, for training a classification model in CAM (239 WSIs) and PAIP (40 WSIs) datasets. By adjusting the IoT and BoT parameters, we generated eight training sets and corresponding models for each dataset. The performance of PathEX was assessed on the testing set comprising 13,076 tile images from 48 WSIs of CAM dataset and 6,391 tile images from 10 WSIs of PAIP dataset. Results: PathEX could extract tile images around boundaries of annotated region differently by adjusting the IoT parameter, while exclusion of blank tile images within annotated regions achieved by setting the BoT parameter. As adjusting IoT from 0.1 to 1.0, and 1—BoT from 0.0 to 0.5, we got 8 train sets. Experimentation revealed that set C demonstrates potential as the most optimal candidate. Nevertheless, a combination of IoT values ranging from 0.2 to 0.5 and 1-BoT values ranging from 0.2 to 0.5 also yielded favorable outcomes. Conclusions: In this study, we proposed PathEX, a framework that integrates IoT and BoT algorithms for tile image extraction at the boundaries of annotated regions while excluding blank tiles within these regions. Researchers can conveniently set the thresholds for IoT and BoT to facilitate tile image extraction in their own studies. The insights gained from this research provide valuable guidance for tile image extraction in digital pathology applications.

Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0304702 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 04702&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0304702

DOI: 10.1371/journal.pone.0304702

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-31
Handle: RePEc:plo:pone00:0304702