EconPapers    
Economics at your fingertips  
 

Retinal prosthesis edge detection (RPED) algorithm: Low-power and improved visual acuity strategy for artificial retinal implants

Yeonji Oh, Jonggi Hong and Jungsuk Kim

PLOS ONE, 2024, vol. 19, issue 6, 1-13

Abstract: This paper proposes a retinal prosthesis edge detection (RPED) algorithm that can achieve high visual acuity and low power. Retinal prostheses have been used to stimulate retinal tissue by injecting charge via an electrode array, thereby artificially restoring the vision of visually impaired patients. The retinal prosthetic chip, which generates biphasic current pulses, should be located in the foveal area measuring 5 mm × 5 mm. When a high-density stimulation pixel array is realized in a limited area, the distance between the stimulation pixels narrows, resulting in current dispersion and high-power dissipation related to heat generation. Various edge detection methods have been proposed over the past decade to reduce these deleterious effects and achieve high-resolution pixels. However, conventional methods have the disadvantages of high-power consumption and long data processing times because many pixels are activated to detect edges. In this study, we propose a novel RPED algorithm that has a higher visual acuity and less power consumption despite using fewer active pixels than existing techniques. To verify the performance of the devised RPED algorithm, the peak signal-to-noise ratio and structural similarity index map, which evaluates the quantitative numerical value of the image are employed and compared with the Sobel, Canny, and past edge detection algorithms in MATLAB. Finally, we demonstrate the effectiveness of the proposed RPED algorithm using a 1600-pixel retinal stimulation chip fabricated using a 0.35 μm complementary metal-oxide-semiconductor process.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0305132 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 05132&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0305132

DOI: 10.1371/journal.pone.0305132

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-10
Handle: RePEc:plo:pone00:0305132