Artificial intelligence-assisted metastasis and prognosis model for patients with nodular melanoma
Chan Xu,
Xiaoyu Yu,
Zhendong Ding,
Caixia Fang,
Murong Gao,
Wencai Liu,
Xiaozhu Liu,
Chengliang Yin,
Renjun Gu,
Lu Liu,
Wenle Li,
Shi-Nan Wu and
Bei Cao
PLOS ONE, 2024, vol. 19, issue 8, 1-22
Abstract:
Objective: The objective of this study was to identify the risk factors that influence metastasis and prognosis in patients with nodular melanoma (NM), as well as to develop and validate a prognostic model using artificial intelligence (AI) algorithms. Methods: The Surveillance, Epidemiology, and End Results (SEER) database was queried for 4,727 patients with NM based on the inclusion/exclusion criteria. Their clinicopathological characteristics were retrospectively reviewed, and logistic regression analysis was utilized to identify risk factors for metastasis. This was followed by employing Multilayer Perceptron (MLP), Adaptive Boosting (AB), Bagging (BAG), logistic regression (LR), Gradient Boosting Machine (GBM), and eXtreme Gradient Boosting (XGB) algorithms to develop metastasis models. The performance of the six models was evaluated and compared, leading to the selection and visualization of the optimal model. Through integrating the prognostic factors of Cox regression analysis with the optimal models, the prognostic prediction model was constructed, validated, and assessed. Results: Logistic regression analyses identified that marital status, gender, primary site, surgery, radiation, chemotherapy, system management, and N stage were all independent risk factors for NM metastasis. MLP emerged as the optimal model among the six models (AUC = 0.932, F1 = 0.855, Accuracy = 0.856, Sensitivity = 0.878), and the corresponding network calculator (https://shimunana-nm-distant-m-nm-m-distant-8z8k54.streamlit.app/) was developed. The following were examined as independent prognostic factors: MLP, age, marital status, sequence number, laterality, surgery, radiation, chemotherapy, system management, T stage, and N stage. System management and surgery emerged as protective factors (HR
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0305468 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 05468&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0305468
DOI: 10.1371/journal.pone.0305468
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().