EconPapers    
Economics at your fingertips  
 

Research on China insurance demand forecasting: Based on mixed frequency data model

Cheng Wang, Mengnan Xu, Zheng Wang and Wenjing Sun

PLOS ONE, 2024, vol. 19, issue 7, 1-16

Abstract: In this paper, we introduce the mixed-frequency data model (MIDAS) to China’s insurance demand forecasting. We select the monthly indicators Consumer Confidence Index (CCI), China Economic Policy Uncertainty Index (EPU), Consumer Price Index (PPI), and quarterly indicator Depth of Insurance (TID) to construct a Mixed Data Sampling (MIDAS) regression model, which is used to study the impact and forecasting effect of CCI, EPU, and PPI on China’s insurance demand. To ensure forecasting accuracy, we investigate the forecasting effects of the MIDAS models with different weighting functions, forecasting windows, and a combination of forecasting methods, and use the selected optimal MIDAS models to forecast the short-term insurance demand in China. The experimental results show that the MIDAS model has good forecasting performance, especially in short-term forecasting. Rolling window and recursive identification prediction can improve the prediction accuracy, and the combination prediction makes the results more robust. Consumer confidence is the main factor influencing the demand for insurance during the COVID-19 period, and the demand for insurance is most sensitive to changes in consumer confidence. Shortly, China’s insurance demand is expected to return to the pre-COVID-19 level by 2023Q2, showing positive development. The findings of the study provide new ideas for China’s insurance policymaking.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0305523 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 05523&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0305523

DOI: 10.1371/journal.pone.0305523

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-06
Handle: RePEc:plo:pone00:0305523