EconPapers    
Economics at your fingertips  
 

Predicting soil thermal properties in freeze-thaw cycles using EFAttNet: A comparative analysis

Pengcheng Wang, Muge Elif Firat, Yi Lin and Tengfei Wang

PLOS ONE, 2024, vol. 19, issue 7, 1-22

Abstract: This study investigates the thermal conductivity (λ) and volumetric heat capacity (C) of sandy soil samples under a variety of conditions, including freeze-thaw cycles at temperatures both above and below zero and differing moisture levels. To estimate these thermal properties, a novel predictive model, EFAttNet, was developed, which utilizes custom-designed embedding and attention-based fusion networks. When compared to traditional de Vries empirical models and other baseline algorithms, EFAttNet demonstrated superior accuracy. Preliminary measurements showed that λ values increased linearly with moisture content but decreased with temperature, whereas C values exhibited a rising trend with both moisture content and freezing temperature. Following freeze-thaw cycles, both λ and C were positively influenced by moisture content and freezing temperature. The EFAttNet-based model proved highly accurate in predicting thermal properties, particularly effective at capturing nonlinear relationships among the influencing factors. Among these factors, the degree of saturation had the most significant impact, followed by the number of freeze-thaw cycles, subzero temperatures, porosity, and moisture content. Notably, dry density exerted minimal influence on thermal properties, likely due to the overriding effects of other factors or specific soil characteristics, such as particle size distribution or mineralogical composition. These findings have significant implications for construction and engineering projects, especially in terms of sustainability and energy efficiency. The demonstrated accuracy of the EFAttNet-based model in estimating thermal properties under various conditions holds promise for practical applications. Although focused on specific soil types and conditions, the insights gained can guide further research and development in managing soil thermal properties across diverse environments, thereby enhancing our understanding and application in this field.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0305529 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 05529&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0305529

DOI: 10.1371/journal.pone.0305529

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-05
Handle: RePEc:plo:pone00:0305529