EconPapers    
Economics at your fingertips  
 

Effectiveness of different sounds in human echolocation in live tests

Michał Bujacz, Aleksandra Królak, Bartłomiej Sztyler, Piotr Skulimowski and Paweł Strumiłło

PLOS ONE, 2024, vol. 19, issue 10, 1-25

Abstract: Echolocation is a vital method of spatial orientation for many visually impaired individuals who are willing to and able to learn it. Blind echolocators use a variety of sounds, such as mouth clicks, cane taps, or specialized sound-emitting devices, to perceive their surroundings. In our study, we examined the effectiveness of several different sounds used in echolocation by conducting trials with 12 blind and 14 sighted volunteers. None of the participants had received formal training in echolocation, though a number identified as self-taught experts. The sounds tested included those played from a loudspeaker, generated by a mechanical clicker, or made by the participants themselves. The task given to the participants was to identify the direction and distance to an obstacle measuring 1x2 meters in an outdoor environment, with the obstacle placed in one of nine possible positions. Our findings indicated that the blind participants displayed significantly better echolocation skills when compared to the sighted participants. The results of the blind participants were also strongly divided into two distinct subgroups—totally blind participants performed much better than those which were legally blind, but had some residual vision. In terms of sound comparisons, we found that sounds with a center frequency near 3-4kHz and a wide spectrum provided higher accuracy rates than those with lower frequency peaks. Sighted participants performed best with 3kHz and 4kHz percussion sounds, while the blind group performed best with blue and pink noise. The loudspeaker generated tones generally yielded better results than those generated by the participant (using a mechanical clicker, mouth clicks or hand claps). These results may be useful in developing training programs that teach echolocation as well as artificial sounds to improve echolocation effectiveness.

Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0306001 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 06001&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0306001

DOI: 10.1371/journal.pone.0306001

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-31
Handle: RePEc:plo:pone00:0306001