EconPapers    
Economics at your fingertips  
 

Gene sequence analysis model construction based on k-mer statistics

Dongjie Gao

PLOS ONE, 2024, vol. 19, issue 9, 1-19

Abstract: With the rapid development of biotechnology, gene sequencing methods are gradually improved. The structure of gene sequences is also more complex. However, the traditional sequence alignment method is difficult to deal with the complex gene sequence alignment work. In order to improve the efficiency of gene sequence analysis, D2 series method of k-mer statistics is selected to build the model of gene sequence alignment analysis. According to the structure of the foreground sequence, the sequence to be aligned can be cut by different lengths and divided into multiple subsequences. Finally, according to the selected subsequences, the maximum dissimilarity in the alignment results is determined as the statistical result. At the same time, the research also designed an application system for the sequence alignment analysis of the model. The experimental results showed that the statistical power of the sequence alignment analysis model was directly proportional to the sequence coverage and cutting length, and inversely proportional to the K value and module length. At the same time, the model was applied to the system designed in this paper. The maximum storage capacity of the system was 71 GB, the maximum disk capacity was 135 GB, and the running time was less than 2.0s. Therefore, the k-mer statistic sequence alignment model and system proposed in this study have considerable application value in gene alignment analysis.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0306480 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 06480&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0306480

DOI: 10.1371/journal.pone.0306480

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-05
Handle: RePEc:plo:pone00:0306480