EconPapers    
Economics at your fingertips  
 

Intergroup evaluative bias in facial representations of immigrants and citizens in the United States

Ryan J Hutchings, Imani Morgan, Jeffrey W Sherman and Andrew R Todd

PLOS ONE, 2024, vol. 19, issue 7, 1-19

Abstract: We used a reverse-correlation image-classification paradigm to visualize facial representations of immigrants and citizens in the United States. Visualizations of immigrants’ faces were judged by independent raters as less trustworthy and less competent and were more likely to be categorized as a non-White race/ethnicity than were visualizations of citizens’ faces. Additionally, image generators’ personal characteristics (e.g., implicit and explicit evaluations of immigrants, nativity status) did not reliably track with independent judges’ ratings of image generators’ representations of immigrants. These findings suggest that anti-immigrant sentiment and racial/ethnic assumptions characterize facial representations of immigrants in the United States, even among people who harbor positivity toward immigrants.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0306872 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 06872&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0306872

DOI: 10.1371/journal.pone.0306872

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-04-29
Handle: RePEc:plo:pone00:0306872