A trustworthy hybrid model for transparent software defect prediction: SPAM-XAI
Mohd Mustaqeem,
Suhel Mustajab,
Mahfooz Alam,
Fathe Jeribi,
Shadab Alam and
Mohammed Shuaib
PLOS ONE, 2024, vol. 19, issue 7, 1-33
Abstract:
Maintaining quality in software development projects is becoming very difficult because the complexity of modules in the software is growing exponentially. Software defects are the primary concern, and software defect prediction (SDP) plays a crucial role in detecting faulty modules early and planning effective testing to reduce maintenance costs. However, SDP faces challenges like imbalanced data, high-dimensional features, model overfitting, and outliers. Moreover, traditional SDP models lack transparency and interpretability, which impacts stakeholder confidence in the Software Development Life Cycle (SDLC). We propose SPAM-XAI, a hybrid model integrating novel sampling, feature selection, and eXplainable-AI (XAI) algorithms to address these challenges. The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. The SPAM-XAI model exhibited improved performance after experimenting with the NASA PROMISE repository’s datasets. It achieved an accuracy of 98.13% on CM1, 96.00% on PC1, and 98.65% on PC2, surpassing previous state-of-the-art and baseline models with other evaluation matrices enhancement compared to existing methods. The SPAM-XAI model increases transparency and facilitates understanding of the interaction between features and error status, enabling coherent and comprehensible predictions. This enhancement optimizes the decision-making process and enhances the model’s trustworthiness in the SDLC.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0307112 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 07112&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0307112
DOI: 10.1371/journal.pone.0307112
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().