Enhanced DBR mirror design via D3QN: A reinforcement learning approach
Seungjun Yu,
Haneol Lee,
Changyoung Ju and
Haewook Han
PLOS ONE, 2024, vol. 19, issue 8, 1-13
Abstract:
Modern optical systems are important components of contemporary electronics and communication technologies, and the design of new systems has led to many innovative breakthroughs. This paper introduces a novel application based on deep reinforcement learning, D3QN, which is a combination of the Dueling Architecture and Double Q-Network methods, to design distributed Bragg reflectors (DBRs). Traditional design methods are based on time-consuming iterative simulations, whereas D3QN is designed to optimize the multilayer structure of DBRs. This approach enabled the reflectance performance and compactness of the DBRs to be improved. The reflectance of the DBRs designed using D3QN is 20.5% higher compared to designs derived from the transfer matrix method (TMM), and these DBRs are 61.2% smaller in terms of their size. These advancements suggest that deep reinforcement learning, specifically the D3QN methodology, is a promising new method for optical design and is more efficient than traditional techniques. Future research possibilities include expansion to 2D and 3D design structures, where increased design complexities could likely be addressed using D3QN or similar innovative solutions.
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0307211 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 07211&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0307211
DOI: 10.1371/journal.pone.0307211
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().