EconPapers    
Economics at your fingertips  
 

Sine-G family of distributions in Bayesian survival modeling: A baseline hazard approach for proportional hazard regression with application to right-censored oncology datasets using R and STAN

Abdisalam Hassan Muse, Amani Almohaimeed, Hana N Alqifari and Christophe Chesneau

PLOS ONE, 2025, vol. 20, issue 3, 1-31

Abstract: In medical research and clinical practice, Bayesian survival modeling is a powerful technique for assessing time-to-event data. It allows for the incorporation of prior knowledge about the model’s parameters and provides a more comprehensive understanding of the underlying hazard rate function. In this paper, we propose a Bayesian survival modeling strategy for proportional hazards regression models that employs the Sine-G family of distributions as baseline hazards. The Sine-G family contains flexible distributions that can capture a wide range of hazard forms, including increasing, decreasing, and bathtub-shaped hazards. In order to capture the underlying hazard rate function, we examine the flexibility and effectiveness of several distributions within the Sine-G family, such as the Gompertz, Lomax, Weibull, and exponentiated exponential distributions. The proposed approach is implemented using the R programming language and the STAN probabilistic programming framework. To evaluate the proposed approach, we use a right-censored survival dataset of gastric cancer patients, which allows for precise determination of the hazard rate function while accounting for censoring. The Watanabe Akaike information criterion and the leave-one-out information criterion are employed to evaluate the performance of various baseline hazards.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0307410 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 07410&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0307410

DOI: 10.1371/journal.pone.0307410

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-05
Handle: RePEc:plo:pone00:0307410