Exploring mixture estimators in stratified random sampling
Kanwal Iqbal,
Syed Muhammad Muslim Raza,
Tahir Mahmood and
Muhammad Riaz
PLOS ONE, 2024, vol. 19, issue 9, 1-21
Abstract:
Advancements in sensor technology have brought a revolution in data generation. Therefore, the study variable and several linearly related auxiliary variables are recorded due to cost-effectiveness and ease of recording. These auxiliary variables are commonly observed as quantitative and qualitative (attributes) variables and are jointly used to estimate the study variable’s population mean using a mixture estimator. For this purpose, this work proposes a family of generalized mixture estimators under stratified sampling to increase efficiency under symmetrical and asymmetrical distributions and study the estimator’s behavior for different sample sizes for its convergence to the Normal distribution. It is found that the proposed estimator estimates the population mean of the study variable with more precision than the competitor estimators under Normal, Uniform, Weibull, and Gamma distributions. It is also revealed that the proposed estimator follows the Cauchy distribution when the sample size is less than 35; otherwise, it converges to normality. Furthermore, the implementation of two real-life datasets related to the health and finance sectors is also presented to support the proposed estimator’s significance.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0307607 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 07607&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0307607
DOI: 10.1371/journal.pone.0307607
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().