Improving human activity classification based on micro-doppler signatures of FMCW radar with the effect of noise
NgocBinh Nguyen,
MinhNghia Pham,
Doan Van-Sang and
VanNhu Le
PLOS ONE, 2024, vol. 19, issue 8, 1-26
Abstract:
Nowadays, classifying human activities is applied in many essential fields, such as healthcare, security monitoring, and search and rescue missions. Radar sensor-based human activity classification is regarded as a superior approach in comparison to other techniques, such as visual perception-based methodologies and wearable gadgets. However, noise usually exists throughout the process of extracting raw radar signals, decreasing the quality and reliability of the extracted features. This paper presents a novel method for removing white Gaussian noise from raw radar signals using a denoising algorithm before classifying human activities using a deep convolutional neural network (DCNN). Specifically, the denoising algorithm is used as a preprocessing step to remove white Gaussian noise from the input raw radar signal. After that, a lightweight Cross-Residual Convolutional Neural Network (CRCNN) with adaptable cross-residual connections is suggested for classification. The analysis results show that the denoising algorithm with a range-bin interval of 3 and a cut-threshold value of 3 achieves the best denoising effect. When the denoising algorithm was applied to the dataset, CRCNN improved the right classification rate by up to 10% compared to the recognition results achieved with the original noise-added dataset. Additionally, a comparison of the CRCNN with the denoising algorithm solution with six cutting-edge DCNNs was conducted. The experimental results reveal that the proposed model greatly outperforms the others.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0308045 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 08045&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0308045
DOI: 10.1371/journal.pone.0308045
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().