EconPapers    
Economics at your fingertips  
 

Gauss Markov and Flow Balanced Vector Radial Learning network traffic classification on IoT with SDN

Rajkumar Kulandaivel, Manikandan Ramachandran, Sathishkumar Veerappampalayam Easwaramoorthy and Jaehyuk Cho

PLOS ONE, 2024, vol. 19, issue 10, 1-19

Abstract: Recent evolution in connected devices modelled a massive stipulation for network traffic resources and classification. Software-defined networking (SDN) enables ML techniques with the Internet of Things (IoT) to automate network traffic. This helps to reduce accuracy and improves latency. Problems by conventional techniques to categorize network traffic acquired from IoT and assign resources can be resolved through SDN solutions. This manuscript proposes a proposed network traffic classification technique on IoT with SDN called Gauss Markov and Flow-balanced Vector Radial Learning (GM-FVRL). With the network traffic features acquired from the IoT devices, SDN-enabled Gauss Markov Correlation-based IoT Network Traffic Feature Extraction is applied to extort relevant network aspects. Next, the flow-balanced radial-based ML model for network traffic categorization uses the relevant extracted network traffic features. With the aid of flow, the balanced radial basis function reduces the influence of noise due to distinct network flow. This helps to improve accuracy and minimize latency. Due to this, better precision and recall is ensured. Performance of our method has been evaluated utilizing a scheme using an SDN traffic dataset. The results show that our method classifies the network traffic with high classification accuracy and minimum latency, ensuring better precision and recall.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0308052 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 08052&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0308052

DOI: 10.1371/journal.pone.0308052

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-05
Handle: RePEc:plo:pone00:0308052