G-Net: Implementing an enhanced brain tumor segmentation framework using semantic segmentation design
Chandra Sekaran D. S. and
Christopher Clement J.
PLOS ONE, 2024, vol. 19, issue 8, 1-21
Abstract:
A fundamental computer vision task called semantic segmentation has significant uses in the understanding of medical pictures, including the segmentation of tumors in the brain. The G-Shaped Net architecture appears in this context as an innovative and promising design that combines components from many models to attain improved accuracy and efficiency. In order to improve efficiency, the G-Shaped Net architecture synergistically incorporates four fundamental components: the Self-Attention, Squeeze Excitation, Fusion, and Spatial Pyramid Pooling block structures. These factors work together to improve the precision and effectiveness of brain tumor segmentation. Self-Attention, a crucial component of G-Shaped architecture, gives the model the ability to concentrate on the image’s most informative areas, enabling accurate localization of tumor boundaries. By adjusting channel-wise feature maps, Squeeze Excitation completes this by improving the model’s capacity to capture fine-grained information in the medical pictures. Since the G-Shaped model’s Spatial Pyramid Pooling component provides multi-scale contextual information, the model is capable of handling tumors of various sizes and complexity levels. Additionally, the Fusion block architectures combine characteristics from many sources, enabling a thorough comprehension of the image and improving the segmentation outcomes. The G-Shaped Net architecture is an asset for medical imaging and diagnostics and represents a substantial development in semantic segmentation, which is needed more and more for accurate brain tumor segmentation.
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0308236 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 08236&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0308236
DOI: 10.1371/journal.pone.0308236
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().