EconPapers    
Economics at your fingertips  
 

Period-aggregated transformer for learning latent seasonalities in long-horizon financial time series

Zhenyang Tang, Jinshui Huang and Denisa Rinprasertmeechai

PLOS ONE, 2024, vol. 19, issue 8, 1-22

Abstract: Fluctuations in the financial market are influenced by various driving forces and numerous factors. Traditional financial research aims to identify the factors influencing stock prices, and existing works construct a common neural network learning framework that learns temporal dependency using a fixed time window of historical information, such as RNN and LSTM models. However, these models only consider the short-term and point-to-point relationships within stock series. The financial market is a complex and dynamic system with many unobservable temporal patterns. Therefore, we propose an adaptive period-aggregation model called the Latent Period-Aggregated Stock Transformer (LPAST). The model integrates a variational autoencoder (VAE) with a period-to-period attention mechanism for multistep prediction in the financial time series. Additionally, we introduce a self-correlation learning method and routing mechanism to handle complex multi-period aggregations and information distribution. Main contributions include proposing a novel period-aggregation representation scheme, introducing a new attention mechanism, and validating the model’s superiority in long-horizon prediction tasks. The LPAST model demonstrates its potential and effectiveness in financial market prediction, highlighting its relevance in financial research and predictive analytics.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0308488 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 08488&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0308488

DOI: 10.1371/journal.pone.0308488

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-10
Handle: RePEc:plo:pone00:0308488