Fruit-In-Sight: A deep learning-based framework for secondary metabolite class prediction using fruit and leaf images
Neeraja M Krishnan,
Saroj Kumar and
Binay Panda
PLOS ONE, 2024, vol. 19, issue 8, 1-15
Abstract:
Fruits produce a wide variety of secondary metabolites of great economic value. Analytical measurement of the metabolites is tedious, time-consuming, and expensive. Additionally, metabolite concentrations vary greatly from tree to tree, making it difficult to choose trees for fruit collection. The current study tested whether deep learning-based models can be developed using fruit and leaf images alone to predict a metabolite’s concentration class (high or low). We collected fruits and leaves (n = 1045) from neem trees grown in the wild across 0.6 million sq km, imaged them, and measured concentration of five metabolites (azadirachtin, deacetyl-salannin, salannin, nimbin and nimbolide) using high-performance liquid chromatography. We used the data to train deep learning models for metabolite class prediction. The best model out of the seven tested (YOLOv5, GoogLeNet, InceptionNet, EfficientNet_B0, Resnext_50, Resnet18, and SqueezeNet) provided a validation F1 score of 0.93 and a test F1 score of 0.88. The sensitivity and specificity of the fruit model alone in the test set were 83.52 ± 6.19 and 82.35 ± 5.96, and 79.40 ± 8.50 and 85.64 ± 6.21, for the low and the high classes, respectively. The sensitivity was further boosted to 92.67± 5.25 for the low class and 88.11 ± 9.17 for the high class, and the specificity to 100% for both classes, using a multi-analyte framework. We incorporated the multi-analyte model in an Android mobile App Fruit-In-Sight that uses fruit and leaf images to decide whether to ‘pick’ or ‘not pick’ the fruits from a specific tree based on the metabolite concentration class. Our study provides evidence that images of fruits and leaves alone can predict the concentration class of a secondary metabolite without using expensive laboratory equipment and cumbersome analytical procedures, thus simplifying the process of choosing the right tree for fruit collection.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0308708 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 08708&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0308708
DOI: 10.1371/journal.pone.0308708
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().