EconPapers    
Economics at your fingertips  
 

Accelerating automatic model finding with layer replications case study of MobileNetV2

Kritpawit Soongswang and Chantana Chantrapornchai

PLOS ONE, 2024, vol. 19, issue 8, 1-22

Abstract: In this paper, we propose a method to reduce the model architecture searching time. We consider MobileNetV2 for 3D face recognition tasks as a case study and introducing the layer replication to enhance accuracy. For a given network, various layers can be replicated, and effective replication can yield better accuracy. Our proposed algorithm identifies the optimal layer replication configuration for the model. We considered two acceleration methods: distributed data-parallel training and concurrent model training. Our experiments demonstrate the effectiveness of the automatic model finding process for layer replication, using both distributed data-parallel and concurrent training under different conditions. The accuracy of our model improved by up to 6% compared to the previous work on 3D MobileNetV2, and by 8% compared to the vanilla MobileNetV2. Training models with distributed data-parallel across four GPUs reduced model training time by up to 75% compared to traditional training on a single GPU. Additionally, the automatic model finding process with concurrent training was 1,932 minutes faster than the distributed training approach in finding an optimal solution.

Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0308852 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 08852&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0308852

DOI: 10.1371/journal.pone.0308852

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-31
Handle: RePEc:plo:pone00:0308852