Vessel trajectory classification via transfer learning with Deep Convolutional Neural Networks
Hwan Kim,
Mingyu Choi,
Sekil Park and
Sungsu Lim
PLOS ONE, 2024, vol. 19, issue 8, 1-15
Abstract:
The classification of vessel trajectories using Automatic Identification System (AIS) data is crucial for ensuring maritime safety and the efficient navigation of ships. The advent of deep learning has brought about more effective classification methods, utilizing Convolutional Neural Networks (CNN). However, existing CNN-based approaches primarily focus on either sailing or loitering movement patterns and struggle to capture valuable features and subtle differences between these patterns from input images. In response to these limitations, we firstly introduce a novel framework, Dense121-VMC, based on Deep Convolutional Neural Networks (DCNN) with transfer learning for simultaneous extraction and classification of both sailing and loitering trajectories. Our approach efficiently performs in extracting significant features from input images and in identifying subtle differences in each vessel’s trajectory. Additionally, transfer learning effectively reduces data requirements and addresses the issue of overfitting. Through extended experiments, we demonstrate the novelty of proposed Dense121-VMC framework, achieving notable contributions for vessel trajectory classification.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0308934 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 08934&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0308934
DOI: 10.1371/journal.pone.0308934
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().